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Abstract
This paper presents a simple algorithm which converts any
context-free grammar (without e-productions) into a connectionist

network which parses strings (of arbitrary but fixed maximum length)

in the language defined by that grammar. The network is fast and
- deterministic. Some modifications of the network are also explored,
G including parsing near misses, disambiguating and learning new
productions dynamically.
e
This work was supported by an Office of Naval Research grant number
g N00014-84-K-0655
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1. Introduction

My goal in designing a connectionist’ parser was to be able to build, in a
systematic way, for any context-free grammar, a network which will parse
strings in that grammar (within a fength restriction). The network must
represent the parse tree for the input when finished, and must clearly
indicate when there is no parse. Most important, | wanted the network to be
deterministic and compietely general. My goal i1s not cognitive modeling per
se, but to provide a powerful technique which could prove useful for natural
language understanding and other connectionist applications. Context-free

rammars have proven very useful to Computer Scientists. The existence of a
ast, simple and relatively efficient connectionist parser may well be of some
importance to Cognitive Scientists working with connectionist models.

Several other connectionist parsing schemes have appeared recently.
Certain ideas can be found in all of them (including mine). They all parse
context-free grammars, using individual units to stand for the terminal and
nonterminal symbols. Given a production such asS - NP VP, there are
excitatory connections from NP and VP nodes to S nodes which can provide
bottom-up evidence for the presence of an S, as well as excitatory
connections from S to NP and VP providing top-down feedback. When a
parse completes, the active units and their connections form a structure
isomaorphic to the parse tree for the input. | will at times referto unitsin a
parsing network as parents or children accordingly.

The work of Cottrell (1985) and Waltz and Poilack (1985) encompasses
natural language understanding in a much broader sense than syntactic
structure alone. Waltz and Polfack do not even attempt to build a general
purpose parsing network. Their network is custom built for each input.
Cottrell’s networks are more generai. He even has a program to buiid the
networks from an input grammar. Unfortunately, the network does not
always find the correct parse.2

In both models, contradictory interpretations of the input are mutuaily
inhibitory. Only one should be on when the network stabalizes. Which one
depends on how much semantic and syntactic support each receives from the
rest of the network. A parse proceeds by activating the input, e.g. the node
for “the” in position one, the node for “man” in position two, etc., and
letting the network run until it settles into a consistent configuration
representing the parse of the input with all ambiguities resolved

The work of Seiman and Hirst (1985) is nearer my own in ambition
their goal is a general purpose parsing scheme which will perform correctly
for any input. They do not consider outside influences, such as semant:cs.
They use mutually inhibitory binder nodes to connect a nonterminat node to M
all the subtrees it might dominate, each binder representing a different

"Foran inroduction to the conrectiorist paradigm, see retdmar ang 3aitard (' 982)
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NN production of the nonterminal. Likewise, binder nodes connect a node to all

R nodes which mightdominate 1t. They use a variation of the Boltzmann

o~ machine (Hinton and Sejnowski, 1983) computational scheme. The units

LK representing the input are clamped on. The others execute asynchronously,

- turning on or off probabilistically based on how much excitation and

AN inhibition they are receiving. Simulated annealing (Kirkpatrick, Gelatt, and
oo Vecchi, 1983) is used to settle the network into a state where the active units

A are mutually reinforcing to a large degree. The best possible state is one

N which represents alegal parse. In order to reach this optimal state with high

\ probability, the network must settle gradually. Selman and Hirst used 24,000

‘ updates for each unit.

L My network is deterministic, fast, guaranteed to work for ail inputs of
R any context-free grammar, and conceptually very simple. It s asimpie, exact
connectionist solution to the computational problem of parsing
Contradictory parses do not inhibit each other (but see section threei; all
possible parses proceed in paratllel. Thisrequires alarge number of units -
typically tens or hundreds of thousands (see below).

20e The remainder of this paper 1s organized into four parts Section two
2 describes the network in detail, giving an algorithm for generating it from a
S:! gven CFG. An exact analysis of the network’s compiexity i1s presented, along
with some ways of trrmming ts size. Section three touches on some methods
of disambiguating, i.e. choosing a unique parse tree for ambiguous input.
L Section four gives a cursory account of parsing near-miss input, 1 €. iInput
b which is almost grammatical. Section five gives a detailed description of how
s productions can be learned dynamically in some circumstances. These latter
po— sections are intended to explore the flexibility of the parser as well as test
some connectonist learning techniques They do not provide an account of
- language acquisition.

All networks have been implemented using the Rochester Connectionist
Simulator (Fanty & Goddard, 1986). Simulation traces are included below.
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2. The Network

2.1 Structure and function

ORI

‘o1 The strategy used closely parallels that of the CYK parser (Hopcroft &

- Ullman, 1979). The network contains units representing the terminals and
" nonterminals of the grammar (several for each, in fact) as weil as match un:ts
L which will be explained below. The units are best thought of as organized
e into a table, with the columns representing starting positions in the input
o string, and the rows representing lengths.  There s a unit for each terminal
symboi in each position of row one. Thereisa unit for each nonterminal at
g every position in the table (potentially; see section 2 2). Terminal units are
o activated by some ouiside source and represent the input to the parser. A
e nonterminal unit will become active if other units representing the right-
hand side of one of its productions. and having appropriate starting posit:ons
and 'engths, are active. The parse proceeds in a bottom-up fashion. Figure 1

Dl
‘n 'l:n

‘&N iustrates the parsing of the string aabbb for the grammar snown. The
- terminal symbols are activated as irput. The A unitin the first row becomes
A active because of input from the a unitin the same position and the

YRS production Asa The Aunitin(2,1) - row two, column one - becomes active
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Figure !
Parsing the input aabbb. Only the relevant terminal and nonterminar unNits are snown

because of input from both thea unitin (1,1) and the Aunitin (1,2) and the
production A-aA. Similarly for the B units. The S unit becomes active
because of input from Ain (2,1) and B in (3,3). Because there is an active start
symbol in column one whose length is the same as the length of the input,
the inputis accepted. In order to mark the end of the input, a special S unit
becomes active at the end of the input string.

The active units represent the parse tree. Of course, there will in general
be many units which become active butdon’t represent a final parse tree. In
the above parse, there will be an active A unitin (1,1), for example. This will
not affect the ability of the network to recognize, but a second, top-down,
pass of activity is necessary in order to pick out only those units which
participate in a complete parse - if the string 1s ambiguous, more than one
parse will stay active (see section three for possible modifications). The top-
down pass works as follows: when an active unit representing the start
symbol beginning in position one and of length n receivesinput froma$
symbol in position n + 1, 1t becomes hyperactive. This unitis the root node of
all parse trees. It passes this hyperactivity down to all units which form part
of one of its completely recognized productions They pass the activity down
In turn until it reaches the bottom. Only the hyperactive units represent a
parse. In order to better distinguish the two fevels of activity, a unit activated
during the first bottom-up pass will be called primed, and a unit active after
the the final pass will be called on. In our simulations, primed units have a
potential and output of 5, on units have a potential and output of 10.

A more detalled account of how the network works foilows. There are
three kinds of units: nonterminal units, terminal units and match units.  Each
unit has two sites, or locations, where an incoming connection might be
made. One s for bottom-up input. Enough inputto thissite will prime the
snit. The othersite 's for too-down input. Every pair of units with a bottom-
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up link between them aiso has a top-down link. if a primed match or
nonterminal unit receives input to the top-down site from an on unit, 't will
turn on. The site functions are described below, and are given exactly in
appendix two.

The terminal units are the simpiest. They are primed by some outside
source and represent the input to the parser. They are all on row one
because they must be of length one. One per starting position should be
primed in order to represent an input, although more than one might be
activated in the case of input ambiguity (see section three). The Sunitsare a
special kind of terminal unit. One should be turned on in the position
following the input.

lst1a 1
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Y 3\ | Tunit \
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sigure 2
A 1 215the nonterminal urit representing A starting at positior ' and of ‘'ength 2 Tnere s
a matcnunit for each combination of iengths for each oroduct.on

The match units are used to represent the various instances of productions
for nonterminal units. They receive bottom-up inputs from units
representing the sympols on ther h s of their orocuction The starting
positions and lengths of these units must be consistent aith the nonterminal
urit beng served and with each other For each nonterminal unit there s
one match unit for eacn allowaoie combination of lengtns for each
production (see ~gure 2) The bottom-up iinks to the match units are
‘wverghted so tnat all the connected units must be orimed before the maten
Jgnitbecomes orimed The bottom-ud iNnputs to a match unitare orocessed
~nith a filtered-sum function  The sum of the inputs s taken, but each input s
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allowed to contribute at most some fixed amount. This seems the most
natural and flexible way of fixing the following probiem.

Suppose match unit X represents a production with three nonterminais on
the r.h.s. Two of the three nonterminal units are primed, giving an input to
the unit of (with wetghts of 2/3 on the links)

7

2 2
-3 ~0*Z =46
3 3

N
. j

which is below the threshold of ten, as desired. Now suppose the first
nonterminal unit turns on because of top-down activation from somewhere
else. The input to the match unitis now

(™)

10*

2 2
-3*=-0*=- =10
3 3

oo

which causes it to become primed falsely. Thisis prevented by limiting each
bottom-up input’sinfluence to 5 * weight.

A nonterminal unit receives bottom-up input from its match units if any
of them become primed, this means one of the productions has been
realized, so the nonterminal unit becomes primed. A nonterminal unit
responds very simply to bottom-up input from its match units. if any are
primed, it becomes primed and provides bottom-up input to match units
above it.

If the priming eventually reaches a start-symbol nonterminal unitin
column one, row n and the inputis of length n, then there is a parse of the
input. Thisroot unit will be receiving “top-down” on input from the S unitin
row n + 1 used to mark the end of the input. Thiscausesittoturnon. it now
provides top-down on input to its match units. Any which were primed turn
on, and provide top-down on feedback to all connected units. In this way the
parse tree(s) will be turned on from the top down. In order to achieve correct
behavior, the units must respond to top-down input in the following way. If
the unitis already primed and the top-down input is at the on level, then the
unitturnson. If the unit were not required to first be primed, then an on
nonterminal unit would turn on all its match units, even though the
production instance they represent may be quiet. Match units have only one
input to their top-down site, so they can simply respond to it in a thresholded
manner. Nonterminai units will typically have many inputs to their too-down
site. Simply summing these inputs would result in incorrect behavior, as input
from two primed match units will have the same sum as input from asingle
on match unit. To differentiate the two cases, nonterminal units take tne
maximum input as the vaiue of the ton-down site. This must be on to nave
any effect.

When primed terminal units rece:ve on input at their top-down site, they
turn on as well. 1t s possible for the network to detect when the parse 's
complete by sensing the presence of an on terminal symbol in every column
up to the length of the input. if we exclude productionswitharhs of
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length one, the parse wilt complete in at most 4*input-length steps. The
network could reject input by timing out.

The network can be turned off by taking away the external input to the
terminal umts (including $). This will remove bottom-up and top-down
activation from the network: the source of all bottom-up activation s the
terminal units, the source of all top-down activation is the S unit acting
through the root node.

2.2 Network construction

A program to build a network for a given context-free grammar has been
written in LISP and tested using the Rochester Connecuionist Simulator (Fanty,
forthcoming). The algorithm appears.in the appendix in a pseudo ianguage
The strategy i1s to work bottom up, first placing each terminal in each position
of row one. Since the productionsof 3 uniton row ndepend only on units in
rows - n,itis possible to build the network in a single bottom-up pass
througn the table. For each combination of lengths of each proauction, the
appropriate units are looked up in the table. If they exist, a match unit for
that production 1s created and the appropriate links made. If none of the
productions of a nonterminal in some location are possible, the nonterminal
unitis not made If, for exampie, the nonterminal B could only generate
strings of length three or more, then no nonterminal units of the form 8. n 1
or B.n 2 would be created, and there would be no match units in charge of
productions looking for such units.

e-productions are not allowed, which is not too limiting, as a grammar
with e-productions can always be transiated to one without They could
easily be added if desired. If there are productions of the form X- Y, where Y
1s a single nonterminal, then Y units must be processed before X units on each
rTow.

2.3 Complexity of the network

In order to facilitate the discussion, I introduce the following.

L = maximum length of input string

T = setof terminalsin the grammar

N = set of nonterminals in the grammar
nin) = set of productions of nonterminal n

vip) = listof nonterminalsin production p (may be repeatsi
= hist of terminals in production p (may oe repeats)

The number of nonterminal and terminal units 1sreasonable In the worst
case there are

L. -1

N - LT

ofthem. The number of match unitsissignificantly larger, however. in the
worst case there are

et .
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match units. The sum represents, for each row, for each column, for each
nonterminal at that location, for all productions of that nonterminal, all the
possible combinations of constituentiengths in an expansion of that
production. The quantity (r-1)-{t(p)| choose |v(p)|-1 represents the number of
different assignments of lengths to constituents which will sum to the desired
length. The reasoningis as foillows How many ways can three constituents
sum to ten? There are two boundaries between constituents to be chosen,
and nine different locations to choose from: (10-1) choose (3-1). The term
‘tip:| appearsin the first term because terminals reduce by one the space into
whtch the nonterminais may expand.

Forexample,if L =15, N = 10, |n(n)| = 5and |vip)| = 3 for all
nonterminais and ignoring terminals, then the network will have at most
1,200 nonterminal units and 153,750 match units. This figure can best be
improved be keeping v(p) small (by putting the grammar in Chomsky normai
form, for example). If|v(p)] = 2 in the above examole, the number of matcn
units wiil be at most 34,000. The size of the network 1sO(nm + '), where n s
the length of the network and m s the number of nonterminais on the right-
hand side of the productions. Thus, it may be desirable in practice to limit the
number of nonterminals on the right-hand side of a production to two. if this
1sdone, the size of the network will be O(n3).

For the following grammar, taken from Selman and Hirst (19851, for
inputs of length up to 15, the number of nonterminal unitsis 570 and the
number of match units s 2,040.

S - NP VP NP - determiner NP2
S - VP NP - NP2

VP 5 verb NP - NP PP

VP - verb NP NP2 - noun

VP . VP PP NP2 - adjective NP2

PP - preposition NP

The number of units may be significan.ly smaller than the worst case if
several nonterminal units cannot generate strings of all lengths (especially
shortlengths). The network described above would have 30 more
nonterminal units and 210 more match units if PPs couid generate strings of
length one. A better examplie of the potential savings s prov.dec be the
following grammar which has the same number of nonterminais ana
productions as the preceeding grammar, but no nonterminal can generate
strings of length one.
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o Forinputs of length up to 15, the numbper of nonterminal unitss 458 and tne
o number of match unitsis 1561, if nonterminal units for each nonterminal
ey were placed at each location of the table, the number of nonterminai units
b wouid be 600 and the number of match units would be 2794,

’. The simulationsrun in O(n) time, where n is the length of the input

v Multiplying the execution time oy the number of units {(with the length of the

rh.s.of productionsiimited to twol, we get a total of O(n+) computation
steps. The serial execution ume for parsing 1s O(n3) tor straightforward
parsing algorithms and about ©)(n2 3) for the asymptotically best aigor:thm so
far This means thatthe network 1s biggersiower than the best we could
expect by about a factor of n. This s because the algorithm s not compietely
parallelizable The activity must work 1ts way up from the bottom ser ally

2.4 Implementation using two-state linear threshold units

it1s possible to build an equivalent network using only simpie, sing:e-site,
'inear threshold units which have only two fevels of activity on and off {1 and
Q) The transformation s simpie. Replace every unit n the orig:nal network
with a pair of units — one for the bottom-up pass, and one for to the top-
down pass (see Figure 3). The bottom-up unit being active corresponras to tne
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aoriginal umit be'ng primed; the too-down unit being active corresponds to
the original unit berng on. The bottom-up inputs to Mmatch unit pairs wiil be
~eighted as nefore to require them atl to be on They no 1onger need to ne
filtered as they only come from other bottom-up units The top down unit
doesnot neeg to take the max:mum of its inouts as it only receves input from
grnertop aown nodes inordertorequire that the pair be primec netore
turning on. the we:gnton the link from the bottom-up unit to the o -aowr
Jineeasto equal the sum of the we:gnts on tne other inputs to “he too
aown unit, and the threshoid on the top-cown unit must oe setso that t
must receive nput from the bottom-up unit and at least one op-down .nput
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When the parse compietes, the active top-down units represent the parse
tree.

2.5 Informal proof of correctness

In order to establish the correctness of a network as described above, we
need only show three things. (Assume the grammar has no e-productions. All
units begin off except those terminal units representing the input, which are
primed.)

(1) Anonterminal unit A m.n will become primed ifand only if other
terminal and nonterminal units spanning m through m + n in exactly the
orderofone of A's productions are primed.

We will say that these other terminal and nonterminal units satisfy one
of A's productions. A will become primed if and only 1f one of its match
untts becomes primed. These are the only units with connections to its
bottom site, and only input to this site will cause an off unit to become
primed. Each match unit corresponds to one of A’s productions. It has an
input from a unit corresponding to each symbol in the production in such
a way that positions m through m + n are spanned exactly. The weights on
the inputs to the match units are such that they must all be primed in
order for the input to exceed the threshold. Each inputis filtered so that
no single input can contribute more its share. Every possible satisfaction
of each of A’s productions has a corresponding match unit.

(2) When the inputis of length n, the first nonterminal unit to turn on (if any
do) will be S.1.n, and it will turn on only if it s first primed. (S s the start
symbol.)

in order for a nonterminal unit to turn on 1t must first be primed and
then receive on input to the top-down site. Since input from an on unitis
required to turn another unit on, the first unit to turn on must recerve top-
down input from $S.n + 1.1, the only unit on from the beginning. The only
unit with such a connection is S.1.n.

(3) Anonterminal unit - other than the first to turn on, asin (2) - will turn on
ifand only if it was first primed and it is one of the units satisfying a
nonterminal unit which turned on previously.

Following (2), we need only show that a primed nonterminal unit wiil
receive input to its top-down site from an on unit if and only if it heips
satisfy some production of an on nonterminal unit. Except forinput from
the on S unit, which has just one connection to the root node,
nonterminal units receive input to their top-down site only from match
units to which they contribute. A match unit wiil turn on just when it was
first primed (production satisfied) and 1ts parent nonterminal unit turns
on. All inputs to a primed match unit contribute to the satisfaction of its
production instance.

2.6 Simulation resuits

A network for the grammar in section 2.3 was built and simulated with
the following input: detnoun verb det adj adj noun, which corresponds to
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sentences such as The man kissed the tall attractive woman. The resuits of the
simulation are given in table 1. Only units which have non-zero potential are
shown. Match units are omitted n order to make the table more readable.
After 26 steps, the network 1sstable. Those units with a potential of 10
represent the (unique) correct parse.

Table 1

Simulation of det noun verb det ad;j ad; noun

Potential after 1 | Potential after 13 | Potential after 26 !

Unit name step steps steps

det 1
noun 2
verb 3

det 4

ady 5

ad).6
noun 7/

S8
2.
21
31
31
71
71

10
10
10
10
10
10
10
5

10
5
5
5
10
5

10
5

10
5

5
10
5

10

10
5

5
10
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Table 2 shows the results of ssimulating noun vero cet noun prep noun
orep det noun, e g John hit the man with Tom with a hammer. Thissentence
1sambiguous In many ways. Notice the overlapping constituents, such as the
PP from5to 9 (PP S5 and the NP ‘rom 3to 6 (NP.34) The match nodes
provide enough information to arstinguish the various narses, but if the
match nodes are invisibie externally, the state of the network does not make
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sense. In any case, it may be desirable to select only one parse. Thisis the
topic of the next section.

. Table 2.
P Simulation of noun verb det noun prep noun prep det noun
[ (terminals not shown)
: Potential after 26
: Potential after 13 | Potential after 26 steps with
- Unitname steps steps disambiguauon
e L {section three)
NP2.11 5 10 10
NP. 11 5 10 10
VP 2.1 5 5 5
S 2.1 5 5 5
NP2.41 5 10 10
NP.4.1 5 5 5
NP2.6.1 5 10 10
NP 6.1 5 10 10
NP2 91 5 10 10
NP.9 2 5 5 5
$1.2 5 5 5
NP 32 5 10 10
PP S 2 5 10 10
NP 8 2 5 10 10
VP23 5 10 10
$23 5 5 5
NP 4.3 5 5 5
PP73 5 10 10
S14 5 5 5
NP 3.4 5 10 5
NP 6.4 5 10 5
VP 25 5 10 10
S25 5 5 5
PP 5.5 5 10 5
S16 5 5 5
NP 4.6 5 5 5
NP 37 5 10 5
VP28 5 10 10
528 5 5 5 i
519 5 10 10 |
. _________ ___________________________________________________________________ | ‘
|
‘ |
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3. Disambiguating

A lot of local disambiguating happens naturally because some
Interpretations do not participate in a complete parse tree and, thus, never
turn on. This could account for word sense disambiguation in many cases.
For example, to parse the sentence The man walked on the deck, both noun
and verb would be primed in position six, but only noun would turn on, as
there is no complete parse using the other interpretation

When the input s truly syntactically ambiguous, however, more than one
parse tree will be on simuitaneously. The parse can be made unambiguous by
allowing only one match node (i e. production) per nonterminal unit to
remain active. The simplest way to do thisis to order the match units of each
nonterminal and add inhibiting links from each to those of lesser rank. Any
inhibiting input from a superior match unit would be enough to prevent
activation. Only the highest ranking primed unit would stay primea. The
match units would need to be ranked not only according to which production
of the grammar they represent, but also according to the combination of
lengths of their production. The ranking would not need to be consistent
throughout the network. One production could dominate another only for
shortlengths or towards the beginning,for example

The above scheme was not impiemented; however, adifferent scheme
was. In thisscheme, each match unitinhibits all the other match units
belonging to the same nonterminal node An off match unit receiving
inhibiting input witl not become primed Thus, this scheme prefers shallower
parse trees.

Because the simulator used is synchronous, multiple match units will prime
simultaneously whenever the subtrees have equal depth. When this
happens, the inhibition must be gradual, or the match units will turn each
other off This will allow them all to come back on the following step and
cycle in this manner indefinitely. The following behavior reliably yields a
single winner. The inhibiting weights between the match units vary
randomly between -0.5 and -1.0 exclusive. A primed unit receiving inhibition
will lower its potential by an amount equal to the strongest inhibiting input
When the potential gets to zero, it turns off. When only one match unitis
left, the lack of inhibition allows it to gain its full primed potential of five
For example, suppose two match units become primed at the same time and
that match unit M1 inhibits M2 with weight -0 .6 and M2 inhibits M1 with
weight - 0.65. The following is a trace of their behavior in one step
increments (with minor arithmetic errors):

M1 50 1.75 0.45 0.0 00
M2 50 199 094 0.67 50
M2 has a higher potential after the first round of inhibition because it s

more weakly inhibited Now M2 isreceiving inhibition equalto -06 175
and M1 s receiving inhibition equaito -0.65 * 199 M2'sdomination of M1
'sincreasing. Thereisno way for M1 to push M2 under 0 since its potential is
tess than M2's and its inhiuition 1s less than its potential With more than two
match units on the interact:ons are more complicated. If the inhibiting inputs

were summed, it would be possibie for every match unit to go off after one
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step and oscillate as described above. Thisis why the total inhibition i1s equal
to the strongest single input.

. If the iInhibitory werghts between match units were adjusted dynamicaily
S according to how often the match unit came on, then the network could

R learn to prefer more common interpretations. It might also be possibie to use
T nonsyntacticinformation to affect the preferred parse with external

o contributions to the inhibition. This was notimplemented.

)] The fast column of Tabie two shows a simulation of the ambiguous
- sentence from the previous section using the disambiguation scheme just

described. Asingle unambiguous parse tree results. No match units battled,

o as the ambiguities involved parse trees of different depths; the first on won
by default. For example, in deciding between the two productions VP - verb
NP and VP - VP PP, the latter always wins because its parse tree is shallower.
I make no claims about the adequacy of this scheme. | presentitasa
demonstration of how disambiguation could be done in this model. Other
strategies are possibie as well.

4. Parsing near-miss input

Itissometimes desirable to give a reasonable parse of input strings which
are notin the language defined by the grammar - ungrammatical but still
understandable natural language utterances, for exampie. The parsing
netwark described abave 1s too rigid to do this effectively if some of the input
1s missing or there i1s extra input. Butif the source of the ungrammaticairty is
simply the substitution of incorrect input of the same length as some correct
nput, then 1t can be made to do this by having match units become partially
primed to an extent reflecting the closeness of the match between the input
string and the production.

c.gured
" A Ce1T-Miss Parse, tNe SorLor of the rputwnicT s graT™Matica. § 0arsea

implemented a netwaork that extends the disambiguating network
described previousiy. Match units whose productions are partiaily satsfied
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may have a potential between 0 and 2. Thisrange was chosen so that
inhibition from a partially-primed match unit will always be less than
inhibition from a primed match unit. The wetghts on inhibiting connections
range from - .5to -10. A primed match unit will always deliver inhibition
of -2.5orless; a partially-primed match unit will always deliver inhibition of
-2 0 ormore. Primed match units always inhibit partially-primed match
untts. Partially-primed match units compete with each other much as primed
match units do (see section three) except the inhibition from a partiaily-
primed match unitis not strong enough to prevent the priming of other
match units Thisis necessary, as @ match unit may become partially-primed
before one of its brothers becomes fully primed The strongest partially-
primed match unit may be beaten out by weaker partially-primed match
units because of the random variation in the strength of the inhibiting
weights

Because inhibition from a partially-primed match unit does not prevent
other match units from becoming partially-primed, care must be taken to
prevent the re-priming of a partially-primed match unit which has just been
defeated Unless itsubsequently receives additional input and becomes fully
primed. a defeated partiaily-primed match unit will stay off.

The permissiveness of the network can be adjusted by setting a minimum
input required for partial priming. in the simulations run, the cutoff was 3
(an input of 10 represented complete satisfaction of the production). The
potential of a partially-primed match unitis equai to 1ts total input divided
by S Some of the key stepsin a simulation of the ungrammatical input det
det noun verb noun are given in Table three. The grammar used was the one

Table 3
Near-miss parse of det det noun verb roun
(Only relevant units shown )
Potentral after step
Unit |
0 | 3 ' 7 |10 | 14|15 7 } 23 and after
! |

det 1 50 {50 :5 50 |50 50 50 | 100
det.2 50 50 50 |50 (50 S0 50 50
noun.3 50 '50 'S0 |50 |50 50 'S0 100
verb 4 50 50 :50 50 50 ;50 50 100
noun 5 50 'S0 50 50 [S0O Is0 50 100
$6 |50 'S0 500 '50 1001100 100 100
NP231 |00 50 50 50 i50 50 50 10 0
NP2 51 00 50 50 '50 50 i50 50 100
NP S 1 co0 00 50 |50 IS0 50 50 0
NP2 22 00 :00 105 1105 ¢105 /105 105 100
VP 42 00 105 50 :50 :50 50 100 100
NP 13 00 105 127 (1271127 1127 100 100
S15 00 ‘00 00 '1.32:132 1100 100 100
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in section 2.3. Only the refevant units are included. As before, many units not
in 3 complete parse will become primed. Even more become partially-
primed. All the non-match units which eventually turn on are shown. The
partial-priming of NP.1.3 after step 3 1sdue to input from det.1; after step 7,
it (actually, its match unit) is also receiving some input from the partiaily-
primed NP2.2.2 so 1ts potential increasesto 1.27. Eventually, the partiai
priming reaches the root node 5.1.5. What happens next differs from
previous networks. In this network, the end-marker, $.6, must have potential
equal to 10 in order to provide sufficient top-down feedback to turn on the
root node. It requires five steps to reach thattevei. Thisis to give complete
parses a chance to reach the top. Once a partially-primed match node turns
on, itis too late for a fully primed match node to inhibit it. When the parse
completes, the section of the input which does not fit into the parse remains
primed.

In asimulation with input det det det verb det det det, no parse
completed NP1.3 and VP4.4 were both partially primed, but their combined
input was less than the threshold for S.1.7's match unit.

S. Learning new productions dynamically
The near-miss network described above has been modified to learn new

productionsdynamically. The circumstances under which it s capable of
learning are depicted in Figure 5. After a near-miss parse, there wiil be a gap

t:gure s
Nhen the production A B C.s . earned. iFre narse'w I be compiete

in the parse tree where some canstituent was “expected” but not founa If
the gap can be parsed as one or two constituents, then a match noge
representing the new production will pe recruited (Feldman, 1982) (A-B8 C:n
Figure 5).
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This mechanism cannot explain the acquisition of a grammar from raw
data. Forone thing, no new nonterminais are learned. Thisis especially
limiting given the restriction on production length (see below). itcan
sometimes account for new rules composed of known constituents. The reai
purpose of this section is to explore the flexibility of the parsing network |
do not claim to have an adequate mechanism for grammar acquisition

5.1 Local learning

This section describes the recruitment of a match node to represent a
production instance. The production will not be recognized elsewhere :n the
& network. In order to make the network more tractable, the right-hand side
= of productions must be of length one or two. 1 will call such productions type
o one and two respectively. For any context-free grammar, there is a weakly
equivalent grammar satisfying this restriction. Each bottom-up inputto a
r‘ match unit now goes to its own site Accompanying each nonterminal unitis
b asingle learn unit and some free match units which do not yet represent a
production. Fixed match units represent production instances as before
except for the presence of two bottom-up sites for type two procuctions. A

-

:‘_— . nonterminal unit being turned on from above without having first been

[ - primed means an instance of the nonterminal is expected but not found. This
F" turns the learn uniton, which enables the free match units If the inputin

question can be parsed as one or two constituents, then scme match unit will
be recruried to represent this production instance.

The additional bottom-up sites are to enable free match units to detect
when they are receiving bottom-up input from a potential production. Each
free match unit can learn only production instances with some fixed
combination of constituent lengths or division For example, the free match
unitin Figure 6 can learn productions with two constituents, the first of
length four and the second of length six. Notice that any combination of one
input to the bottom-right site and one input to the bottom-ieft site
constitutes a legal production.
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Figure 6 depicts the setup of a free match unit just before learning occurs
The free match un:tis receiving bottom-up input to each site from exactly
one unit Ithasnotyet primed because 1tisin a free state; itrequires
additionai input from the learn unit before responding The nonterminal
unit B 3 1015 on but no match unitis primed This will cause the learn unit to
come on. Theiearn unitrequires on input from 8 3 10 and s inhibited by the
match units Once the learn unit comes on, the free match unit will become
highly active briefly 1 will call this state excited 1t now inhibits the learn
unit, whose job isdone. If more than one input per bottom-up site had been
active. the free match unit would not have responaed

Three changes now occur which transform the free match unitinto a fixea
match umit First, the unit no ionger enters the free state .n wnich input from
the learn unit s required Second, the weights on all inactive bottom-up Iinxs
are zeroed The match unitnow responds oniy to the pairiearned Third, the
top-down links to the learned constituents are given positive weignts it s
the need for this weight change which necessitates the special excited activity
of a match unit which has justlearned a oroduction Weight change occurs at
the destination unit. The only way for 8 34 and C 7 6 {see Figure 6) to <now
to increase the werght on the top-aown links from the matcn unit s from this
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.‘n Figure 6.
- Configuration of free match unit just before l[earning. The Learn unit's about to turn on
. ' level of activity. The other, non-primed units receiving top-down excited
A inputdo not change the weights. Because of the excited input, 8.3.10,B.3.4
b and C.7.6 become momentarily excited as well. Soon, all excited units settle
to an on state and the parse completes. The situation after learning is shown
in Figure 7.
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It 1s possible for free match nodes in separate divisions to each learn a
production at the same time. This ability is necessary for global learning in
N the next section. Since all match nodes inhibit each other, itis necessary to
, ‘ suppress this inhtbition during learning. Because of this, all interpretations of
n ambiguous input will be learned if they are in different divisions and none
L will be learned if they are in the same division. If there is more than one
o match node representing a division, only one should learn a new procduction
e This can be achieved by ordering the free match nodes of a division and

P, putting strong inhibitory connections from the earlier match nodes to the
learn site of the later ones.

Table four shows a simulation of a local-learning network for the simpie
o grammar

. S-AB A-aa B-b
The production instance being learned 1sB8.3.1 ~ b.1. Afterstep 13, the near-

miss parse has activated B 3.1 even though it was never primed. The learn
e unit and the free match unit take a coupie of stepstocome on B 3 1 ang,

e afterstep 15, the learn unit are decaying. If learning does not haooen, they

P will turn off eventually Notice that a.3 becomes excited two stens after the
i match unit does. The delay :s caused by the need to increase the we:gnt on
N
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f‘ Configuration of match umt just after learning

.

Table 4
Demonstration of local learning.
(Only relevant units shown )
.t Potential after step
:.-.._h Unit T ,
}. 12113!14 15 | 16 17+ 18 | 19 | 20
f
| .
N al |s 5 |5 10 {10 10 10 .10 ;10
w7 a2 5 15 'S 10 10 10 10 10 10
- a3 |5 15 5 5 5 5 15 15 110
. $4 0 :10 (10 10 10 10 10 0 10
P B 31 0 0 9 8 ' 8 15 15 15 .10
;- learnB 31 |0 0 8 115 {14 0 0 0 0
match 0 0 0 '3 i 15 15 15 10 :10
" A2 5 10 10 110 {10 10 10 10 110
::. S13 10 10 10 {10 10 10 10 10 110
X
L
[
l__.:
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Table 5
Same input asin Table 4, but after learning
(Only relevant units shown.)
Potential after step
Uit , ‘
6 | 7 1 9 } 10 | 1
a.l 5 1S 'S E .10
a.z2 5 (5 5 /5 10
a.3 5 .5 5 i 5 10
$4 10 |10 10 10 10
B31 |5 |5 10 |10 10
learnB.3.1 (0O 0 0 0 0
match 5 'S 5 10 10
A12 |5 .5 10 10 10
s13 |5 {10 |10 {10 10

the link from the match node to a.3. Table five highlights a parse of the same
input after learning.

5.2 Global learning

This section describes an extension to the above scheme which distributes
a production instance learned locally throughout the whole network.
Although the exact mechanism s different, the idea of using a centrai
template to program other representations was inspired by McClelland’s
(1985) Connection information Distributer | will first give a high-leve!
description of what happens, then provide a more detailed description of the
implemented network. There s asingle, global representation of each
production When learning occurs locally, the production learned is noted in
the global store. After the network calms down, it enters a special learn
state, which limits the spreading activation. When global learning occurs. the
units iInvolved in the production are activated throughout the network by the
global representation in such a way that the local learning mechanism of the
previous section burns in all the production instances.

When every instance of some production in the network i1s active and
learning simultaneously, a great deal of care must be taken to insure cross-
taik does not occur. A single unit, such as NP.3.4, may be both the parentand
son for the same production. in order to distinguish the various roles a unit
may play, a separate unitis used for each. To facilitate this, the grammar
must be in Chomsky normai form, which means that all productions have the
form
X-sYZorX -a, where X, YandZarenonterminalsand ais aterminal Any
context-free grammar can be converted to a weakly equivalent grammarn
Chomsky normal form (Hoocroft & Ullman, 1979). For sucn a grammar, there
are only three roles a nonterminai can olay parent, ieft-son and right-son.
Accordingiy, the job previousiy done by nonterminal units.s now done by a
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Progucnioninstance A .34 - B3 1C4 3withratevant irks snown

trio of units, one for each role of the nonterminal. Figure 8 shows the setup
for the production instance A34 -831C4.3.

Normally, the three nonterminal units pass on activation. Bottom-up
activation is spread from the match unit to the parent unit to the two son
units which are connected to other match units. Top-downr activation comes
from one of the son units and goes through the parent unit to the match
unit. However, the spread of activation between parent and son units for a
nonterminal group is blocked when the network isin a giopal learn state In
the networks implemented, this s dore by naving the activation go through
pass units which are :inhibited by a GloballearnUnit (see Figure 10) When
the network 1s not in a global learn state, it behaves just like the one
described insection 5 1, disambiguation, near-miss parsing and locai learning
work the same way  The network has a central representation of
productions comprised of four poolis of units (Figure 9) The top pool has ore
unit far every nonterminal and represents that nonterminal as a parent The
bottom left (bottom right) pooi also has one unit for every nonterminar and
represents that nonterminai when itis the left-son (ngnt-son) The termna.
pool has one unit per terminal and represents that terminai asason To
represent the production A-»B C, a production unit will have tao-way
excitatory hinks to the A unitin the top pool, the B unitin the bottom feft
pool, and the C unit in the bottom right pool

“he global units are connected to nonterminai groups througnout the
parsing network in the following ~vay (see Figure 10). £ach uritin the toD0
poolisconnected to the top site of the parenturitin a:l the nontermina.
groups forthat  't. When a unitin the top poat turrs or_ the nottam rmits
in cil the corresponding nonterminal groups turnon Eacn un* .n the nottom
left poolisconnected to the pottom site of tne .eft son uritn gll tre
nonterminal grouos for that un t AMher aunit nthe bottom eft poo: turns
on, the top ‘eft units \n ail the corresponding nrontermira: groups necome
primed There are similar conrec'ons rom the bottom rignt pool to the
right-son unit of eacn correspQra:.rg "oNtermina: 3roud. and from the
terminal poal to the terminar un:ts
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For each connection described in the preceding paragraph, there s a
reciprocal connection to the unitsin the centrai poois faumtina
nonterminal group becomes excited, it wiil cause the corresponaing un:tin
the central pool to become orrmed If exactly one unit:n the top 0ooi ana
one n each bottom orone in the terminal pool are primed, a unique
oroduction s represented by the pattern of activation Thisis how the gioba:
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production representation knows wnen local learning has occurred and what
has been iearned

Here is what happens when learning occurs. The local learning
mechanism causes some production to be learned. The parentand two
children of the production instance learned become excited In the parent
nonterminal group, only the bottom unit becomes excited because the pass
unitsin a nonterminal group do not pass on excitation Stmularty, in the left
son nonterminal group, only the upper left un:t becomes excited, and
likewsise for the right -son  This causes the corresponding units in the centrai
pools to become primed (Thisdoes notseriously affect the parsing network )
The global production unit representing this production s now receiving
activation from ail three components and will become primed after two
ssmulation steps If more than one global production unit attempts to
become primed at the same time, mutual inhibition will force them all to zero
potential and global learning of these productions will not occur. This
prevents the cross tatk which would occur if two productions were turned on
0 the central tempiate ssimultaneously. Once a global production unit
pecomes primed, it innibits all other giobal production units. The
components of the production in the global nonterminal and terminal poois
become nactive assoon as they stop receiving excired input from the
network The primed feedback from the global production unit is not
enough to keep them active Seif feedback keens the production unit
orimed. 1t witl notturn on until the parse is finished. It requires excitation
from the GioballearnUnit, which does not turn on until the network has
finished a parse {during simulations, thisunitis turned on by nand)

When the parse completes, the terminal units are turned oft and the
network calms down The GlobaiLearnunitisturred on This causas the stiil
primead groduction unit Lo turn on, wnich turns on the global units
comprising the oroduction For exampie, if the oroduction to be :earned is
A-BC henthe Aunitinthe top pool, the Bunitin the fower left pooi, and
the Cunitin the lower right pool will be on This causes all bottom unitsin A
ronterminal groups to turn on and ail top left units in B nontermina: groups
and all top ngnt unitsin Cnonterminal groups to become primed Because
the GlobalLlearnUnit sinnibiting the pass units, activation wiil not spread
within nonterminal groups

The situation s just what s needed for 1ocal lfearning to occur ail over the
retwork The bottom unitof the B nonterminal groups s orn, but no fixed
match unitis primed  Foreach division, there wiil be one free match unit
recetving input from B as ‘eft son and Cas rightson. These productions will
be learned (Thiswill not affect the glooal pooisof unitsin ther current
state ) After a few steps, the giobai units become exnhausted ana turn off.
They wiil remain quiescent for a few stepsionger -enough to fet the network
calmdown When the network un tsiose irpat from these giobar units, they
cuickly die down

in the network descrinec so far g ooatlear~ing would not occur et the
ronterminai group wnich learred the product on tocally For examoie,
suppose the local proguction instance A 43 341 C52 siearned A iittle
~hije 'ater global .earning taxesolace 84 2andCo lareormedand A d 3
son, outA d 3 willnotiearn this productioninstance vecause 3 4 1and
C 5 2 are 3is0 primec, wnich orrmes “he now fixed match unitfor <h.s
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production, which inhibits the local learn unit for A.4.3. Thisis avoided by
having the GloballearnUnit inhibit the inhibition of local learn units. It has
a strong positive connection to all local learn units at the inhibit site. We now
must worry about redundant match units being learned. Thisis prevented by
having fixed match units inhibit free match units with the same division If
the production being learned is already known for some division, then that
fixed match unit will become primed, and no new match unit will be fixed.
This is an extension of a mechanism aiready in piace: free match units already
inhibit other free match units (ranked lower) within the same division. These
inhibiting connections remain even after the unit becomes fixed All we need
to add are inhibiting connections from match units which begin life fixed.
With this addition, the new production can truly be learned globally 1t aiso
makes the network more robust, as described in the nextsection.

The network builder was programmed to make two unfixed match nodes
per division per nonterminal group 1n order to test that no redundant
productions were learned. Simulations for the following grammar worked
correctly (the results are somewhat big for a table, so they will be
summarized):

S-'AB Asa C-DC
B-BC B-b

First, the network was run with the input b cab. Thisresulted in a near-muss
parse (actually the miss was not too near). The production instance

A.1.3-B 12A.3.1waslearned. This caused the three units A.1.3 parent,
B.1.2.Ison and A.3.1.rson to become excited, which primed the global units
A.Parent, B.Lson and A.Rson, which primed A->B A, the giobal production
unit for A-B C. A couple of steps later the excited network units calimed
down to on. This caused all the global units except A->B A to turn off
When the parse completed, the terminal units were turned off and the
network was run until only A->B.A was left orimed (about 12 steps) The
GlobaltearnUnit was turned on by hand, which turned on A->B.A, which
turned on A Parent, B.Lson and A .Rson. On input from these units turned on
all A.x.y.parentunits and primed all B.x.y.Ison and A .x.y rson units. Learn
units for all the A.x.y groups came on. The ones with length greater than ane
had free match units get excited, one per division, and learn their new
productions.

The A.1.3 group had its fixed match unitforA 1348 12A 3 1 prime
because of the production instance it had just learned Thisdid not prevent
the learn unit from coming on because the GloballLearnUnit was on itdid
prevent the other free match unit with the division 2 + 1 from activating. One
free match unit for the division 1 + 2 became excited and fearned the
production instance A.1.3-8.1.1 A 2.2 After a few steps, the giobal
nonterminal units (but not the GlobailearnuUnit) become exhausted as ao al!
tne learn units. The network quickly calms down.

After iearning, the network was tested with the inputbbaab, whicn
requires requires the use of two new instances of the production A~-B A. The
parse completed successfully The following units were on when the network
stabtiized
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5.3 Deferred learning

The global learning described in the previous section would fail to
distribute productions learned locally if more than one islearned during a

: parse. Itis possible for the network to take advantage of periods of quiet to
o1 catch up on unlearned productions. The mechanism | propose (but have not

: implemented) is spontaneous excited activity of fixed match units when the
network is quiet. The probability of a match unit becoming excited would be
inversely proportional to the length of time 1t has been fixed, so that recently
fixed match units would be more likely to become excited. The excited match
unit would excite the parent and children of the production, which would
start global learning as in the previous section. More than one match unit
activating simultaneously would do no harm. Global learning of aiready
learned productions wiil have no effect as described above

- One way to accomplish this would be to run a link from the giobal learn
L unit (which could just as easily be a network of units) to match units The link
® would be to a new site. The global learn unitis on when parsing 1S not taking
Bt place, so if the match unit responded to input to this site by becoming excitea
probabiulistically, we would have the desired effect. The weirght on this link
N could be made non-zero when the unit becomes fixed and gradually decay
after that. Recently fixed match units would get the most activation and,
. thus be more likely to fire.

Rehearsing productions also makes the network more robust 1fa

B match unit were to “die”, then another would be recruited to take its place
A the next time i1ts production was rehearsed.
Y 6. Discussion

®:

- t consider the major advantage of my parser to be i1ts generaiity and its
A ] quick, sure results The major difference between it and other parsing

i schemes s the way it maintains all possible parses in paralle!, eiiminating tne
we need for search (1 e. refaxation) One of the goals of connectionism :s to
account for the soiution of complex tasks in a few computationai steps using
o massive parallelism. My network coes exactly that.
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The major disadvantage of my parser is its rigid structure and fixed
length. Because the length of the network is fixed, the set of strings parsed 1s
finite. Of course, thisis true of any implemented parsing mechanism, but one
might hope for an extendable structure. It would be nice if the network
could parse longer strings by acquiring more resources (i.e. units) on the fly.
McClelland’s (1985) CID mechanism may prove useful in this capacity
(McClelland and Kawamoto, 1986), though the resource requirements of CID
are substantial. | would very much like to be able to efficently acquire and
release general purpose working units as needed. Nevertheless, | think that
fixed length structures can prove useful and may point the way to flexible
structures which perform the same task.

The parsing algorithm upon which my network 1s based i1s an exampie of
dynamic programming (Aho, Hopcroft & Ullman, 1974). Other problems with
efficentdynamic programming solutions may have similar parallel
implementations. One such problem s finding the number of edit operations
(insert, replace and delete) required to convert one string to another. A fast
implementation of this algorithm could be very useful in cognitive tasks
requiring pattern matching. The values passed during a computation are the
number of edit steps so far. This means that a potentially large amount of
information must be comunicated, unlike the parsing network in which only
the existence of constituents s communicated. While this does not stand in
the way of a fast parallel implementation, it may present complications for a
connectionist model, where the output values of units are not meant to carry
much information (Feldman and Ballard, 1982).

The learning mechanism described is certainly inadequate as a theory of
language acquisition, but in keeping with the purpose of the paper, it does
demonstrate some technigques which may prove useful. In connectionist
models, multiple copies of subnetworks which do the same task are common.
Learning in such a way that all copies are kept consistentis a difficult
problem. My solution does this with a minimum of overhead. It may even be
possible to use a similar mechanism to learn new syntactic categories
cijnabr}ucally. The learning results also demonstrate that the network can be

lexible.

There are several directions future work might take. One would be to
make the length restriction more flexible. Another would be to improve the
learning algorithm. The resuits given only scratch the surface of what s
needed. Another we have partially worked out would be to efficiently
extend the network to handle augmented grammars (Gazdar et al, 1985) in
which the grammar symbols have properties. Rules are applicable only if the
properties meet the accompanying restrictions, e g. that the NP and VP have
the same number.
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Appendix One
Network Building Algorithm

fength is the maximum length of the input string
nonterminalss the set of nonterminals
terminals is the set of terminals

start-symbol is the start symbol of the grammar

for i« 1tolength /* make the terminal units */
for-each termin terminals
MakeUnit( type « Terminal, name « term.;.1)
endfor-each
MakeUnit(type « Terminal, name « $..1)
endfor

for row « 1tolength
forco/ e 1to 1+ (length - row)
for-each ntin nonterminals
for-each prod in Productions-of(nt)
if (row = LengthOf(prod)) then /* possibly room *
DoProduction(row,col,nt,prod)
endif
endfor-each
endfor-each
endfor
endfor

/* connect end markers with start symbol units */
for. « 1tol/ength - 1
if (Exists(start-sympol.1.1)) then
Makelink(from e S/ + 1.1, to « start-symbo! 11,
weight « 2, site « too)
endif

endfor
if (Exists(start-symbol. 1.length )) then
MakeUnit(type « Terminal, name « $ length + 1 )
MakeLink(from « $ length + 1.1, to « start-symbni 1 length,
weight « 2, site « top)
endif

DoProduction(/ength,start.nt,prod) «

The vectors ntlen and sum are used to generate every possibie *

o* combination of lengths of symboisin this productior ~tlen{}is ~
i* the length of the /™ nonterminai in proa sum{;] sthesumof =
* the fengths of the first/ - 1 nonterminals in proa ‘

*setupintial configuration *

weight« 20 LengthOf(prod)
preces «— NumberOfNontermirals(prod)

.............

-
o~ '..-:". K R <. e Kl . K B . . . . - . .t et . . . n.\“.\--‘-‘.-' - - - b.'
PP PO WAL WP YREUR, AT UL R I P AU W TP TR UL U VT WU T G P YR L R S DR AR LI WO A B GG VLG Y X, T, L, PR




ke
nttot « length - NumberOfTerminais(prod) ,* length of all nt's *’
* check for an all-terminal production of the wrong length *-
. if preces = 0 and length = LengthOf(prod) then return
- for i« 1to preces -1
- ntlen(i] &1
ot sumf] 1 -1
. endfor
sum(pieces] « preces - 1
A ntlen(pieces] « nttot - sum(preces]
** * loop once for each configuration */

loop *until break */
-* test configuration */

where « start ¥ where the next symbol must begin *-
whichnt &« 1 /* which nonterminal is nextin the prod =
for-each symbol in prod
if sNonterminal(symbol) then
if Exists(symbol.where ntlen{whichnt]) then
whichnt & whichnt + 1
where « where + ntlen{which]
else goto next  /* thisconfiguration fails *
endi?
else /* symbao! s aterminal *
if Exists(symboi.where 1) then
where « where + 1
else goto next * this configuration fails «
endi?
endif
endfor-each

*

* aconfiguration with all subordinate units in existence
/* has been found.

if Not(Exists(nt.start.length)) then
d!\/}akeUmt(type «— Nonterminal, name « nt.start./length)
endi
-* match units are not named, so the index of the made
> unitissaved in a variable for future reference
match e~ MakeUnit(type « Match)
where « start  * where the next symbol must begin ©
whichnt e 1 *which nonterminal is nextin the prod *
* make links between match and subordinate units *
for-each symbolin prod
if IsNonterminal(symbol) then
MakelLink(from « symboi.where ntlen{whichntj,
to « match, site « bottom, weight « weight)
Makelink(to « sympol where. ntlen[whichnt],

[V S0 V0 GV W MV SAL W SV W S0 ST SRR S Ve, W6 R Y ISIST VS P P WU VDT AT Toi. B VI AW S S




»
oo from « match, site « top, weight « 1)
RO whichnt « whichnt + 1
P where « where + ntlen{which]
i else /* symbol is aterminal */
- MakeLink(from « symbol.where.ntlen{whichnt],
o to «- match, site « bottom, weight « weight)
R Makelink(to « symbol.where.ntlen{whichnt],
- from e match, site « top, weight « 1)
L where « where + 1
.[ endif
endfor
- /* make links between match and nt *.
- Makelink(from « match, to <~ nt.start./length, site « bottom,
weight « 1)
o MakelLink(to « match,from « nt.start.length, site « top,
LI weight e 1)
next: /* make next configuration */
3 change « pieces - 1
B while(change > 0 and
'y : ntlen[change] + sum(change] = nttot - (pieces - change))
SO change « change - 1
- endwhile
R if(change < 1)then exitloop /* alldone -no more ¥/
Ceo /* configurations v
o endif
{ ntlen{change] « ntlen(change] + 1
i for i « change + 1 to preces
ntlen{i] «1
L sum e sumii - 1] + ntlen{i - 1]
[~ endfor
I ntlen[pieces] « nttot -sum(pieces] /* last must take up slack ™
endioop
o
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Appendix Two

Unit Functions for Simple Network

*site functions - these return a value for each site of the unit These vajues
are used by the other functions beiow */

> SFsum 1s used by bottom site of nonterminal units */
SFsum{input-/ist)

sum =00

for-each \nputin input-iist

sum = sum + (Value(input)*Weight(input))

endfor-each

return sum
end SFsum

* SFfilterSum is used by bottom site of match units *-
SFfilterSum(input-iist)

sum =00

for-each inputin input-list

sum = sum + Min(Value(input), 5.0) * Weight(input))

endfor-each

return sum
end SFfilterSum

* SFmax 1s used by top site of nonterminal and terminal units *
SFmax(input-iist)
hold = 0.0
for-each inputin input-iist
if(hold < (Value(input)*Weight(input))) then
hold = (Value(input)*Weight(input))
endif
endfor-each
return sum
end SFsum

* These functions are called to set unit parameters after the site functions
have been called. The same one can be used for all units it externai primed
input s provided for the input string *.

UFparse(unit)
if(unit state = off and SiteValue(unit,"bottom™) 10 0) then
unitstate = primed
unit potential = 50
unit output = 5
else if(unit state = primed and SitevValue(un:t, "top”) "0 0) then
unit state = on
unit potential = 100
unitoutput = 10
endif -~ else leave it alone *
end UFoarse
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